Fast Frame Rate CCD Scientific Cameras for Microscopy


  • VGA Resolution CCD Cameras
  • Monochrome Scientific-Grade Cameras with <15 e- Read Noise
  • Up to 200.7 Frames per Second for the Full Sensor
  • Support for LabVIEW, MATLAB, µManager, and MetaMorph

340M-GE

Standard Camera Sensor

340M-USB

Standard Camera Sensor

340M-GE Scientific CCD Camera Mounted on a Thorlabs Cerna® Series Microscope

Related Items


Please Wait
Camera on B-Scope
Click to Enlarge

The Fast Frame Rate Scientific-Grade Camera can be used for Ca2+ ratiometric studies of intracellular dynamics.

Applications

  • Fluorescence Microscopy
  • Flow Cytometry
  • Ca2+ Imaging
  • UV Imaging
  • Particle Tracking
  • SEM/EBSD
Scientific Camera Selection Guide
Compact Scientific
Zelux™
(Smallest Profile)
Kiralux® CMOS
Kiralux® CMOS Polarization Sensitive
Quantalux®
(<1 e- Read Noise)
Scientific CCD 1.4 MP CCD
4 MP CCD
8 MP CCD
VGA Resolution CCD
(200 Frames Per Second)
Jason Mills
Jason Mills
General Manager,
Thorlabs Scientific Imaging

Feedback?
Questions?
Need a Quote?

Contact TSI

Features

  • Up to 200.7 Frames per Second (fps) for the Full Sensor (See Specs Tab for Details)
  • 1/3" Format, 640 x 480 Pixel (VGA) Monochrome CCD Sensor with 7.4 µm Square Pixels (On Semi / Truesense KAI-0340)
  • Software-Selectable 20 MHz or 40 MHz Readout: Maximize Frame Rate
    (40 MHz) or Minimize Noise (20 MHz)
  • 55% Peak Quantum Efficiency at 500 nm for Standard Version (See Specs Tab for Details)
  • 10% Peak Quantum Efficiency at 485 nm for UV Version (See Specs Tab for Details)
  • <15 e- Read Noise Improves the Threshold of Detectability Under Low Light Conditions
  • Asynchronous Reset, Triggered, and Bulb Exposure Modes (See Triggering Tab for Details)
  • ThorCam GUI with 32- and 64- Bit Windows® 7 and 10 Support
  • SDK and Programming Interface Support:
    • C, C++, C#, Python, and Visual Basic .NET APIs
    • LabVIEW, MATLAB, µManager, and MetaMorph Third-Party Software
  • 1/4"-20 Tapped Holes for Post Mounting

Thorlabs' Fast Frame Rate Scientific CCD Cameras (US Patent 9,380,241 B2), which offer up to 200.7 frames per second at 40 MHz dual-tap readout of the full sensor with 640 x 480 pixel (VGA) resolution, are specifically designed for microscopy and other demanding scientific applications. These monochrome cameras are ideal for fluorescence microscopy and flow cytometry applications.

Sensors for Visible or UV Applications

We offer two versions of our fast frame rate camera. Our standard sensor is designed for visible applications and has a peak quantum efficiency (QE) of 55% at 500 nm. The UV version of the camera, which has a peak QE of 10% at 485 nm, features a sensor with a quartz faceplate in order to permit higher transmission of UV light and enable applications at UV wavelengths. Please see the Specs tab for plots of the QE for both sensors.

Industry-Standard USB 3.0 or Gigabit Ethernet Interfaces

Thorlabs' scientific cameras are offered with a choice of USB 3.0 or Gigabit Ethernet (GigE) interface. GigE is ideal for situations where the camera must be far from the PC or there are multiple cameras that need to be controlled by the same PC. The GigE cameras are provided with a GigE frame grabber card and cables. Since USB 3.0 is supported by most computers, the USB cameras do not come with a card; however, one is available separately below. A power supply and software are supplied with all cameras. More information on what's included is on the Shipping List tab. Your computer must have a free PCI Express slot to install the GigE interface. For more information on the three interface options and recommended computer specifications, please see the Interface tab.

We offer our fast frame rate cameras in our standard, non-cooled package. Since these cameras are designed for high frame rates and short exposures, cooling the sensor is not required. For applications with low light levels and exposures longer than 1 second, we recommend our 1.4 Megapixel, 4 Megapixel or 8 Megapixel scientific-grade CCD cameras.

Our cameras have triggering options that enable custom timing and system control; for more details, please see the Triggering tab. External triggering requires a connection to the auxiliary port of the camera. Accessory cables and boards to "break out" the individual signals are available below.

Our 340M-GE camera comes with a user-removable IR filter; for details on the transmission please see the Specs tab. If the filter is removed, it can be replaced with a user-supplied Ø1" (Ø25 mm) filter or another optic up to 4 mm thick.

The cameras feature standard C-Mount (1.000"-32) threading, and Thorlabs provides a full line of thread-to-thread adapters for compatibility with other thread standards, including the SM1 (1.035"-40) threading used on our Ø1" Lens Tubes. The front face also has 4-40 tapped holes for compatibility with our 60 mm Cage System. Four 1/4"-20 tapped holes, one on each side of the housing, are compatible with our Ø1" posts. These flexible mounting options make Thorlabs' scientific cameras the ideal choice for integrating into home-built imaging systems as well as those based on commercial microscopes.

Scientific Camera Basics
Scientific Camera Catalog PDF
Scientific Camera Capabilities
Item #a 340M-USB 340M-GE 340UV-USB 340UV-GE
Sensor Type On Semi / Truesense KAI-0340 Monochrome CCD
Number of Active Pixels 640 x 480 (Horizontal x Vertical)
Imaging Area 4.736 mm x 3.552 mm (Horizontal x Vertical)
Pixel Size 7.4 μm x 7.4 μm
Optical Format 1/3" Format (5.92 mm Diagonal)
Peak Quantum Efficiency 55% at 500 nm 10% at 485 nm
Number of Taps (Software Selectable) Single, Dual
Exposure Time 0 to 1000 seconds in 1 ms Incrementsb
CCD Pixel Clock Speed 20 MHz or 40 MHz
ADCc Gain 0 to 1023 Steps (0.036 dB/Step)
Optical Black Clamp 0 to 1023 Steps (0.25 ADU/Step)d
Vertical Hardware Binninge Continuous Integer Values from 1 to 24
Horizontal Software Binninge Continuous Integer Values from 1 to 24
Region of Interest 1 x 1 Pixel to 640 x 480 Pixels, Rectangular
Read Noisef <15 e- at 20 MHz
Digital Output 14 Bit Single Tap: 14 Bit
Dual Tap: 12 Bit
14 Bit Single Tap: 14 Bit
Dual Tap: 12 Bit
Cooling None
Host PC Interfaceg USB 3.0 Gigabit Ethernet USB 3.0 Gigabit Ethernet
Lens Mount C-Mount (1.000"-32)
  • The specified performance is valid when using a computer with the recommended specifications listed on the Interface tab.
  • Exposure time varies with operating mode; exposure times shorter than 1 ms may be possible when using an external trigger.
  • ADC = Analog-to-Digital Converter
  • ADU = Analog-to-Digital Unit
  • Camera Frame Rate is impacted by the Vertical Hardware Binning parameter. For color cameras, when the Image Type setting in ThorCam is anything other than "Unprocessed" only 1 x 1 binning is available. When set to Unprocessed, the camera can bin up to 24 x 24, but the image produced will be monochrome.
  • If your application is read-noise limited, we recommend using the lower CCD pixel clock speed of 20 MHz. For more information about read noise, and for examples of how to estimate the limiting factor of total camera noise, please see the Camera Noise Tutorial.
  • For more information on these interface options, please see the Camera Interface tab.
Example Frame Rates at 1 ms Exposure Time
CCD Size and Binninga Single Tap Dual Tap
20 MHz 40 MHz 20 MHz 40 MHz
Full Sensor (640 x 480) 57.0 fps 112.3 fps 103.3 fps 200.7 fps
Full Sensor, Bin by 2 (320 x 240) 110.1 fps 213.5 fps 196.8 fps 372.4 fps
Full Sensor, Bin by 10 (64 x 48) 429.0 fps 764.7 fps 712.9 fps 1185.4 fps
  • Camera Frame Rate is impacted by the Vertical Hardware Binning parameter. For color cameras, when the Image Type setting in ThorCam is anything other than "Unprocessed" only 1 x 1 binning is available. When set to Unprocessed, the camera can bin up to 24 x 24, but the image produced will be monochrome.
Quantum Efficiency
Click to Enlarge
Click for Raw Data for Standard Cameras
Click for Raw Data for UV-Enhanced Cameras
This curve shows the quantum efficiency of the camera sensor. The UV camera has a sensor with a quartz faceplate and no microlens array, which leads to increased sensitivity at UV wavelengths at the expense of performance in the visible. No filter is provided with our UV enhanced cameras; standard cameras include the IR blocking filter with the transmission shown to the right.
Quantum Efficiency
Click to Enlarge

Click for Raw Data
The IR blocking filter (Thorlabs' Item # FESH0700) is only provided on the 340M series cameras. It can be removed from the camera; instructions are provided in the manual. If the filter is removed, it can be replaced with a user-supplied Ø1" (Ø25 mm) filter or another optic up to 4 mm thick.

Thorlabs' Scientific-Grade CCD Cameras are ideal for a variety of applications. The photo gallery below contains images acquired with our 1.4 megapixel, 4 megapixel, 8 megapixel, and fast frame rate cameras.

To download some of these images as high-resolution, 16-bit TIFF files, please click here. It may be necessary to use an alternative image viewer to view the 16-bit files. We recommend ImageJ, which is a free download.

Thorlabs' Scientific Camera Applications (Click Images for Details)
Intracellular Dynamics Brightfield Microscopy Opthalmology Fluorescence Microscopy Multispectral imaging Neuroscience SEM
Intracellular Dynamics Brightfield Microscopy Ophthalmology (NIR) Fluorescence Microscopy Multispectral Imaging Neuroscience SEM/TEM
Thorlabs' Scientific Camera Recommended for Above Application
1.4 Megapixel
Fast Frame Rate
4 Megapixel
8 Megapixel
1.4 Megapixel 4 Megapixel
1.4 Megapixel
4 Megapixel
1.4 Megapixel
1.4 Megapixel 1.4 Megapixel
4 Megapixel
Fast Frame Rate

Multispectral Imaging

The video to the right is an example of a multispectral image acquisition using a liquid crystal tunable filter (LCTF) in front of a monochrome camera. With a sample slide exposed to broadband light, the LCTF passes narrow bands of light that are transmitted from the sample. The monochromatic images are captured using a monochrome scientific camera, resulting in a datacube – a stack of spectrally separated two-dimensional images which can be used for quantitative analysis, such as finding ratios or thresholds and spectral unmixing.

In the example shown, a mature capsella bursa-pastoris embryo, also known as Shepherd's-Purse, is rapidly scanned across the 420 nm - 730 nm wavelength range using Thorlabs' KURIOS-WB1 Liquid Crystal Tunable Filter. The images are captured using our 1501M-GE Scientific Camera, which is connected, with the liquid crystal filter, to a Cerna® Series Microscope. The overall system magnification is 10X. The final stacked/recovered image is shown below.

Multispectral imaging
Click to Enlarge

Final Stacked/Recovered Image

 


Thrombosis Studies

Thrombosis is the formation of a blood clot within a blood vessel that will impede the flow of blood in the circulatory system. The videos below are from experimental studies on the large-vessel thrombosis in Mice performed by Dr. Brian Cooley at the Medical College of Wisconsin. Three lasers (532 nm, 594 nm, and 650 nm) were expanded and then focused on a microsurgical field of an exposed surgical site in an anesthenized mouse. A custom 1.4 Megapixel Camera with integrated filter wheel were attached to a Leica Microscope to capture the low-light fluorescence emitted from the surgical site. See the videos below with their associated descriptions for further infromation.

Arterial Thrombosis

In the video above, a gentle 30-second electrolytic injury is generated on the surface of a carotid artery in an atherogenic mouse (ApoE-null on a high-fat, “Western” diet), using a 100-micron-diameter iron wire (creating a free-radical injury). The site (arrowhead) and the vessel are imaged by time-lapse fluorescence-capture, low-light camera over 60 minutes (timer is shown in upper left corner – hours:minutes:seconds). Platelets were labeled with a green fluorophore (rhodamine 6G) and anti-fibrin antibodies with a red fluorophore (Alexa-647) and injected prior to electrolytic injury to identify the development of platelets and fibrin in the developing thrombus. Flow is from left to right; the artery is approximately 500 microns in diameter (bar at lower right, 350 microns).


Venous Thrombosis

In the video above, a gentle 30-second electrolytic injury is generated on the surface of a murine femoral vein, using a 100-micron-diameter iron wire (creating a free-radical injury). The site (arrowhead) and the vessel are imaged by time-lapse fluorescence-capture, low-light camera over 60 minutes (timer is shown in upper left corner – hours:minutes:seconds). Platelets were labeled with a green fluorophore (rhodamine 6G) and anti-fibrin antibodies with a red fluorophore (Alexa-647) and injected prior to electrolytic injury to identify the development of platelets and fibrin in the developing thrombus. Flow is from left to right; the vein is approximately 500 microns in diameter (bar at lower right, 350 microns).

Reference: Cooley BC. In vivo fluorescence imaging of large-vessel thrombosis in mice. Arterioscler Thromb Vasc Biol 31, 1351-1356, 2011. All animal studies were done under protocols approved by the Medical College of Wisconsin Institutional Animal Care and Use Committee.

Camera Back Panel Connector Locations

USB 3.0 Back Panel Layout
Click to Enlarge

340M-USB and 340UV-USB Back Panel Layout
Gigabit Ethernet Back Panel Layout
Click to Enlarge

340M-GE and 340UV-GE Back Panel Layout


TSI-IOBOB and TSI-IOBOB2 Break-Out Board Connector Locations


TSI-IOBOB and TSI-IOBOB2 Connector 8050-CAB1 Connectors Camera Auxiliary (AUX) Port
6 Pin Mini Din Female Connector
Female 6-Pin Mini Din Female Connector
6 Pin Mini Din Male Connector
Male 6-Pin Mini Din Male Connector (TSI-IOBOB end of Cable)
12 Pin Hirose Male Connector
Male 12-Pin Hirose Connector (Camera end of Cable)
12 Pin Hirose Female Connector
Female 12-Pin Hirose Connector (Auxiliary Port on Camera)

Auxiliary Connector

The cameras and the break-out boards both feature female connectors; the 8 megapixel cameras have a 12 pin Hirose connector, while the break out boards have a 6-pin Mini-DIN connector. The 8050-CAB1 cable features male connectors on both ends: a 12-pin connector for connecting to the camera and a 6-pin Mini-DIN connector for the break-out boards. Pins 1, 2, 3, 5, and 6 are each connected to the center pin of an SMA connector on the break-out boards, while pin 4 (ground) is connected to each SMA connector housing. To access one of the I/O functions not available with the 8050-CAB1, the user must fabricate a cable using shielded cabling in order for the camera to adhere to CE and FCC compliance; additional details are provided in the camera manual.

Camera AUX Pin # TSI-IOBOB and TSI-IOBOB2
Pin #
Signal Description
1 - Reserved Reserved for future use
2 - Reserved Reserved for future use
3 - Reserved Reserved for future use
4 6 STROBE_OUT
(Output)
A TTL output that is high during the actual sensor exposure time when in continuous, overlapped exposure mode. It is typically used to synchronize an external flash lamp or other device with the camera.
5 3 TRIGGER_IN
(Input)
A TTL input used to trigger exposures on the transition from the high to low state.
6 1 LVAL
(Output)
Refers to "Line Valid." It is an active-high TTL signal and is asserted during the valid period on each line. It returns low during the inter-line period between each line and during the inter-frame period between each frame.
7 2 TRIGGER_OUT
(Output)
A 6 µs positive pulse asserted when using the various external trigger input options; TRIGGER_IN or LVDS_TRIGGER_IN. The signal is brought out of the camera as TRIGGER_OUT at the High-to-Low transition to allow triggering of other devices.
8 - LVDS_TRIGGER_IN_N
(Input, Differential Pair with Pin 9)
A LVDS (low-voltage differential signal) input used to trigger exposures on the transition from the high state to low state. The suffix "N" identifies this as the negative input of the LVDS signal.
9 - LVDS_TRIGGER_IN_P
(Input, Differential Pair with Pin 9)
A LVDS (low-voltage differential signal) input used to trigger exposures on the transition from the high state to low state. The suffix "P" identifies this as the positive input of the LVDS signal.
10 4 GND The electrical ground for the camera signals
11 - Reserved Reserved for future use
12 5 FVAL_OUT
(Output)
Refers to "Frame Valid." It is a TTL output that is high during active readout lines and returns low between frames.

ThorCam™

ThorCam is a powerful image acquisition software package that is designed for use with our cameras on 32- and 64-bit Windows® 7 or 10 systems. This intuitive, easy-to-use graphical interface provides camera control as well as the ability to acquire and play back images. Single image capture and image sequences are supported. Please refer to the screenshots below for an overview of the software's basic functionality.

Application programming interfaces (APIs) and a software development kit (SDK) are included for the development of custom applications by OEMs and developers. The SDK provides easy integration with a wide variety of programming languages, such as C, C++, C#, Python, and Visual Basic .NET. Support for third-party software packages, such as LabVIEW, MATLAB, and µManager* is available. We also offer example Arduino code for integration with our TSI-IOBOB2 Interconnect Break-Out Board.

*µManager control of Zelux and 1.3 MP Kiralux cameras is not currently supported. When controlling the Kiralux Polarization-Sensitive Camera using µManager, only intensity images can be taken; the ThorCam software is required to produce images with polarization information.

Recommended System Requirementsa
Operating System Windows® 7 or 10 (64 Bit)
Processor (CPU)b ≥3.0 GHz Intel Core (i5 or Higher)
Memory (RAM) ≥8 GB
Hard Drivec ≥500 GB (SATA) Solid State Drive (SSD)
Graphics Cardd Dedicated Adapter with ≥256 MB RAM
Motherboard USB 3.0 (-USB) Cameras: Integrated Intel USB 3.0 Controller
or One Unused PCIe x1 Slot (for Item # USB3-PCIE)
GigE (-GE) Cameras: One Unused PCIe x1 Slot
Connectivity USB or Internet Connectivity for Driver Installation
  • See the Performance Considerations section below for recommendations to minimize dropped frames for demanding applications.
  • Intel Core i3 processors and mobile versions of Intel processors may not satisfy the requirements.
  • We recommend a solid state drive (SSD) for reliable streaming to disk during image sequence storage.
  • On-board/integrated graphics solutions present on Intel Core i5 and i7 processors are also acceptable.

Software

Version 3.5.1

Click the button below to visit the ThorCam software page.

Software Download

Example Arduino Code for TSI-IOBOB2 Board

Click the button below to visit the download page for the sample Arduino programs for the TSI-IOBOB2 Shield for Arduino. Three sample programs are offered:

  • Trigger the Camera at a Rate of 1 Hz
  • Trigger the Camera at the Fastest Possible Rate
  • Use the Direct AVR Port Mappings from the Arduino to Monitor Camera State and Trigger Acquisition
Software Download

Click the Highlighted Regions to Explore ThorCam Features

Thorcam GUI Window

Camera Control and Image Acquisition

Camera Control and Image Acquisition functions are carried out through the icons along the top of the window, highlighted in orange in the image above. Camera parameters may be set in the popup window that appears upon clicking on the Tools icon. The Snapshot button allows a single image to be acquired using the current camera settings.

The Start and Stop capture buttons begin image capture according to the camera settings, including triggered imaging.

Timed Series and Review of Image Series

The Timed Series control, shown in Figure 1, allows time-lapse images to be recorded. Simply set the total number of images and the time delay in between captures. The output will be saved in a multi-page TIFF file in order to preserve the high-precision, unaltered image data. Controls within ThorCam allow the user to play the sequence of images or step through them frame by frame.

Measurement and Annotation

As shown in the yellow highlighted regions in the image above, ThorCam has a number of built-in annotation and measurement functions to help analyze images after they have been acquired. Lines, rectangles, circles, and freehand shapes can be drawn on the image. Text can be entered to annotate marked locations. A measurement mode allows the user to determine the distance between points of interest.

The features in the red, green, and blue highlighted regions of the image above can be used to display information about both live and captured images.

ThorCam also features a tally counter that allows the user to mark points of interest in the image and tally the number of points marked (see Figure 2). A crosshair target that is locked to the center of the image can be enabled to provide a point of reference.

Third-Party Applications and Support

ThorCam is bundled with support for third-party software packages such as LabVIEW, MATLAB, and .NET. Both 32- and 64-bit versions of LabVIEW and MATLAB are supported. A full-featured and well-documented API, included with our cameras, makes it convenient to develop fully customized applications in an efficient manner, while also providing the ability to migrate through our product line without having to rewrite an application.

Thorcam Software Screenshot
Click to Enlarge

Figure 1: A timed series of 10 images taken at 1 second intervals is saved as a multipage TIFF.
Thorcam Software Screenshot
Click to Enlarge

Figure 2: A screenshot of the ThorCam software showing some of the analysis and annotation features. The Tally function was used to mark four locations in the image. A blue crosshair target is enabled and locked to the center of the image to provide a point of reference.

 

Performance Considerations

Please note that system performance limitations can lead to "dropped frames" when image sequences are saved to the disk. The ability of the host system to keep up with the camera's output data stream is dependent on multiple aspects of the host system. Note that the use of a USB hub may impact performance. A dedicated connection to the PC is preferred. USB 2.0 connections are not supported.

First, it is important to distinguish between the frame rate of the camera and the ability of the host computer to keep up with the task of displaying images or streaming to the disk without dropping frames. The frame rate of the camera is a function of exposure and readout (e.g. clock, ROI) parameters. Based on the acquisition parameters chosen by the user, the camera timing emulates a digital counter that will generate a certain number of frames per second. When displaying images, this data is handled by the graphics system of the computer; when saving images and movies, this data is streamed to disk. If the hard drive is not fast enough, this will result in dropped frames.

One solution to this problem is to ensure that a solid state drive (SSD) is used. This usually resolves the issue if the other specifications of the PC are sufficient. Note that the write speed of the SSD must be sufficient to handle the data throughput.

Larger format images at higher frame rates sometimes require additional speed. In these cases users can consider implementing a RAID0 configuration using multiple SSDs or setting up a RAM drive. While the latter option limits the storage space to the RAM on the PC, this is the fastest option available. ImDisk is one example of a free RAM disk software package. It is important to note that RAM drives use volatile memory. Hence it is critical to ensure that the data is moved from the RAM drive to a physical hard drive before restarting or shutting down the computer to avoid data loss.

Pixel PeekVertical and Horizontal Line ProfilesHistogramCamera Control IconsMeasurement and Annotation FunctionsMeasurement and Annotation Functions

USB 3.0 Contents Example

Scientific Camera, Cables, and Accessories
Click to Enlarge

Item # Shown: 340M-USB

In Addition to the Camera, Each USB3.0 Item Includes the following:

  • USB 3.0 Cable (Micro B to A)
  • Power Supply, with Region-Specific Power Cord
  • Wrench to Loosen Optical Assembly
  • Lens Mount Dust Cap (Also Functions as IR Filter Removal Tool)
  • CD with ThorCam Software
  • Quick-Start Guide and Manual Download Information Card

Gigabit Ethernet Contents Example

Scientific Camera, Cables, and Accessories
Click to Enlarge

Item # Shown: 340M-GE

In Addition to the Camera, Each GigE Item Includes the following:

  • Gigabit Ethernet PCI Express Card
  • Gigabit Ethernet Cable
  • Power Supply, with Region-Specific Power Cord
  • Wrench to Loosen Optical Assembly
  • Lens Mount Dust Cap (Also Functions as IR Filter Removal Tool)
  • CD with ThorCam Software
  • Quick-Start Guide and Manual Download Information Card
Recommended System Requirements
Operating
System
Windows® 7, 8.1, or 10 (64 bit)
Processor
(CPU)a
≥3.0 GHz Intel Core i5, i7, or i8
Memory (RAM) ≥8 GB
Hard Drive ≥500 GB (SATA) Solid State Drive (SSD)b
Graphics Card Dedicatedc Adapter with ≥256 MB RAM
Power Supply ≥600 W
Motherboard USB 3.0 (-USB) Cameras:
Integrated Intel USB 3.0 Controller
or One Unused PCIe x1 Slot
(for Item # USB3-PCIE)

GigE (-GE) Cameras:
One Unused PCIe x1 Slot
Connectivity USB or Internet Connectivity
for Driver Installation
  • Intel Core i3 processors and mobile versions of Intel processors may not satisfy the requirements.
  • We recommend a solid state drive (SSD) for reliable streaming to disk during image sequence storage.
  • On-board/integrated graphics solutions present on Intel Core i5 and i7 processors are also acceptable.

Thorlabs offers two interface options across our scientific camera product line: USB 3.0 and Gigabit Ethernet (GigE). Once other camera decisions, such as field of view and frame rates, have been made, for many of our camera types it is necessary to choose one of these interfaces. It is important to confirm that the computer system meets or exceeds the recommended requirements listed to the right; otherwise, dropped frames may result, particularly when streaming camera images directly to storage media.

Definitions

  • Camera Frame Rate: The number of images per second generated by the camera. It is a function of camera model and user-selected settings. 
  • Effective Frame Rate: The number of images per second received by the host computer's camera software. This depends on the limits of the selected interface hardware (chipset), CPU performance, and other devices and software competing for the host computer resources.
  • Maximum Bandwidth: The maximum rate (in bits/second or bytes/second) at which data can be reliably transferred over the interface from the camera to the host PC. The maximum bandwidth is a specified performance benchmark of the interface, under the assumption that the host PC is capable of receiving and handling data at that rate. An interface with a higher maximum bandwidth will typically support higher camera frame rates, but the choice of interface does not by itself increase the frame rate of the camera.

USB 3.0

USB 3.0 is a standard interface available on most new PCs, which means that typically no additional hardware is required, and therefore these cameras are not sold with any computer hardware. For users with PCs that do not have a USB 3.0 port, a PCIe card is sold separately below. USB 3.0 supports a speed up to 320 MB/s and cable lengths up to 3 m. Support for multiple cameras is possible using multiple USB 3.0 ports on the PC or a USB 3.0 hub.

Gigabit Ethernet

GigE is ideal for situations requiring longer cable lengths, as well as for systems that require using multiple cameras with one computer. GigE supports a speed up to 100 MB/s and cable lengths up to 100 m. It also uses fairly inexpensive cables, but does require the use of a computer with a GigE card installed. Support for multiple cameras is easily achieved using a Gigabit Ethernet switch. However, the GigE card supplied with the camera is recognized as a public connection to the network; institutions with strict policies only allow registered devices and trusted connections. For any questions regarding using our GigE card at your institution, please contact your IT department.

Scientific Camera Interface Summary

Interface USB 3.0 Gigabit Ethernet
Interface Image (Click to Enlarge) USB 3.0 Scientific Camera Port Gigabit Ethernet Camera port
Maximum Cable Length 3 m 100 m
Maximum Bandwidtha 320 MB/s 100 MB/s
Support for Multiple Cameras Via Multiple USB 3.0 Ports or Hub Via Switch Topology (Click for Details)b
Available Cameras 200 Frames per Second Scientific-Grade CCD Cameras
1.4 Megapixel Scientific-Grade CCD Cameras
4 Megapixel Scientific-Grade CCD Cameras
8 Megapixel Scientific-Grade CCD Cameras
  • Performance will vary depending on the exact PC configuration.
  • Up to 4 cameras have been tested in the GigE switch topology.

Triggered Camera Operation

Our scientific cameras have three externally triggered operating modes: streaming overlapped exposure, asynchronous triggered acquisition, and bulb exposure driven by an externally generated trigger pulse. The trigger modes operate independently of the readout (e.g., 20 or 40 MHz; binning) settings as well as gain and offset. Figures 1 through 3 show the timing diagrams for these trigger modes, assuming an active low external TTL trigger.

Camera Timing Diagram
Click to Enlarge
Figure 1: Streaming overlapped exposure mode. When the external trigger goes low, the exposure begins, and continues for the software-selected exposure time, followed by the readout. This sequence then repeats at the set time interval. Subsequent external triggers are ignored until the camera operation is halted.
Timing Diagram
Click to Enlarge
Figure 2: Asynchronous triggered acquisition mode. When the external trigger signal goes low, an exposure begins for the preset time, and then the exposure is read out of the camera. During the readout time, the external trigger is ignored.  Once a single readout is complete, the camera will begin the next exposure only when the external trigger signal goes low.
Camera Timing
Click to Enlarge
Figure 3: Bulb exposure mode. The exposure begins when the external trigger signal goes low and ends when the external trigger signal goes high. Trigger signals during camera readout are ignored.
Camera Triggering in ThorCam Software
Figure 4: The ThorCam Camera Settings window. The red and blue highlighted regions indicate the trigger settings as described in the text.

External triggering enables these cameras to be easily integrated into systems that require the camera to be synchronized to external events. The Strobe Output goes high to indicate exposure; the strobe signal may be used in designing a system to synchronize external devices to the camera exposure. External triggering requires a connection to the auxiliary port of the camera. We offer the 8050-CAB1 auxiliary cable as an optional accessory. Two options are provided to "break out" individual signals. The TSI-IOBOB provides SMA connectors for each individual signal. Alternately, the TSI-IOBOB2 also provides the SMA connectors with the added functionality of a shield for Arduino boards that allows control of other peripheral equipment. More details on these three optional accessories are provided below.

Trigger settings are adjusted using the ThorCam software. Figure 4 shows the Camera Settings window, with the trigger settings highlighted with red and blue squares. Settings can be adjusted as follows:

  • "HW Trigger" (Red Highlight) Set to "None": The camera will simply acquire the number of frames in the "Frames per Trigger" box when the capture button is pressed in ThorCam.
  • "HW Trigger" Set to "Standard": There are Two Possible Scenarios:
    • "Frames per Trigger" (Blue Highlight) Set to Zero or >1: The camera will operate in streaming overlaped exposure mode (Figure 1).
    • "Frames per Trigger" Set to 1: Then the camera will operate in asynchronous triggered acquisition mode (Figure 2).
  • "HW Trigger" Set to "Bulb (PDX) Mode": The camera will operate in bulb exposure mode, also known as Pulse Driven Exposure (PDX) mode (Figure 3).

In addition, the polarity of the trigger can be set to "On High" (exposure begins on the rising edge) or "On Low" (exposure begins on the falling edge) in the "HW Trigger Polarity" box (highlighted in red in Figure 4).

Example Camera Triggering Configuration using Scientific Camera Accessories

Camera Triggering with TSI-IOBOB2 Sheild for Arduino
Figure 5: A schematic showing a system using the TSI-IOBOB2 to facilitate system integration and control. 

As an example of how camera triggering can be integrated into system control is shown in Figure 5. In the schematic, the camera is connected to the TSI-IOBOB2 break-out board / shield for Arduino using a 8050-CAB1 cable. The pins on the shield can be used to deliver signals to simultaneously control other peripheral devices, such as light sources, shutters, or motion control devices. Once the control program is written to the Arduino board, the USB connection to the host PC can be removed, allowing for a stand-alone system control platform; alternately, the USB connection can be left in place to allow for two-way communication between the Arduino and the PC. Configuring the external trigger mode is done using ThorCam as described above.

TSI Logo

About Thorlabs Scientific Imaging

Thorlabs Scientific Imaging (TSI) is a multi-disciplinary team dedicated to solving the most challenging imaging problems. We design and manufacture low-noise, high performance scientific cameras, interface devices, and software at our facility in Austin, Texas. 

A Message from TSI's General Manager

As a researcher, you are accustomed to solving difficult problems but may be frustrated by the inadequacy of the available instrumentation and tools. The product development team at Thorlabs Scientific Imaging is continually looking for new challenges to push the boundaries of Scientific Cameras using various sensor technologies. We welcome your input in order to leverage our team of senior research and development engineers to help meet your advanced imaging needs.

Thorlabs' purpose is to support advances in research through our product offerings. Your input will help us steer the direction of our scientific camera product line to support these advances. If you have a challenging application that requires a more advanced scientific camera than is currently available, I would be excited to hear from you.

We're All Ears!

Sincerely,
Jason Mills
Jason Mills
General Manager
Thorlabs Scientific Imaging


Posted Comments:
Yu Zhang  (posted 2020-11-25 06:09:47.21)
It would be really great to see an offer of a soft/flexible USB3 cable. USB 3 cables are usually quite rigid. It is not easy to guide it through lots of other optics on the same table too. A soft USB3 cable will really a benefit. Cheers, Yu
llamb  (posted 2020-12-07 03:42:32.0)
Hi Yu, thank you for your feedback. We select our cables based on signal integrity, as we have found considerable variation in the quality of available cabling. Flexibility is largely a function of the required wire gauge, shielding for signal integrity, low IR losses required for proper data integrity, and power supplies. We unfortunately do not have a more flexible cable at this time, but will take your feedback into consideration.
Will Anthony  (posted 2020-04-21 02:14:38.61)
Please provide more power connector detail and power interface pin diagrams and voltage/current requirements so that systems integration companies can more easily power your cameras off of other supplies.
YLohia  (posted 2020-05-12 09:38:28.0)
Thank you for your feedback. I had reached out to you directly to gather more information about the specific requirements you need for your application.
Abhishek S  (posted 2020-03-05 01:09:13.453)
we are looking for an high speed camera module with a Serial/ LVDS interface for measuring crack size in specimens when subjected to load conditions
nbayconich  (posted 2020-03-09 10:21:22.0)
Thank you for contacting Thorlabs. A Techsupport Representative will reach out to you directly to discuss your application and help select a suitable camera model.
Tiberius Brochure Download

Thorlabs offers four families of scientific cameras: Zelux™, Kiralux®, Quantalux®, and Scientific CCD. Zelux cameras are designed for general-purpose imaging and provide high imaging performance while maintaining a small footprint. Kiralux cameras have CMOS sensors in monochrome, color, NIR-enhanced, or polarization-sensitive versions and are available in compact, passively cooled housings; the CC505MU camera incorporates a hermetically sealed, TE-cooled housing. The polarization-sensitive Kiralux camera incorporates an integrated micropolarizer array that, when used with our ThorCam™ software package, captures images that illustrate degree of linear polarization, azimuth, and intensity at the pixel level. Our Quantalux monochrome sCMOS cameras feature high dynamic range combined with extremely low read noise for low-light applications. They are available in either a compact, passively cooled housing or a hermetically sealed, TE-cooled housing. We also offer scientific CCD cameras with a variety of features, including versions optimized for operation at UV, visible, or NIR wavelengths; fast-frame-rate cameras; TE-cooled or non-cooled housings; and versions with the sensor face plate removed. The tables below provide a summary of our camera offerings.

Compact Scientific Cameras
Camera Type Zelux™ CMOS Kiralux® CMOS Quantalux® sCMOS
1.6 MP 1.3 MP 2.3 MP 5 MP 8.9 MP 12.3 MP 2.1 MP
Item # Monochrome: CS165MUa
Color: CS165CUa
Mono.: CS135MU
Color: CS135CU
NIR-Enhanced
Mono.: CS135MUN
Mono.: CS235MU
Color: CS235CU
Mono., Passive
Cooling: CS505MU
Mono., Active Cooling: CC505MU
Color: CS505CU
Polarization:
CS505MUP
Mono.:
CS895MU
Color:
CS895CU
Mono.:
CS126MU
Color:
CS126CU
Monochrome,
Passive Cooling: CS2100M-USB
Active Cooling: CC215MU
Product
Photos

(Click to
Enlarge)
Quantalux Cameras
Electronic Shutter Global Shutter Global Shutter Rolling Shutterb
Sensor Type CMOS CMOS sCMOS
Number of
Pixels (H x V)
1440 x 1080 1280 x 1024 1920 x 1200 2448 x 2048 4096 x 2160 4096 x 3000 1920 x 1080
Pixel Size 3.45 µm x 3.45 µm 4.8 µm x 4.8 µm 5.86 µm x 5.86 µm 3.45 µm x 3.45 µm 5.04 µm x 5.04 µm
Optical
Format
1/2.9"
(6.2 mm Diag.)
1/2"
(7.76 mm Diag.)
1/1.2"
(13.4 mm Diag.)
2/3"
(11 mm Diag.)
1"
(16 mm Diag.)
1.1"
(17.5 mm Diag.)
2/3"
(11 mm Diag.)
Peak Quantum
Efficiency

(Click for Plot)
Monochrome:
69% at 575 nm

Color:
Click for Plot

Monochrome:
59% at 550 nm

Color:
Click for Plot

NIR:
60% at 600 nm
Monochrome:
78% at 500 nm

Color:
Click for Plot
Monochrome & Polarization:
72%
(525 to 580 nm)

Color:
Click for Plot
Monochrome:
72%
(525 to
580 nm)

Color:
Click for Plot
Monochrome:
72%
(525 to
580 nm)

Color:
Click for Plot
Monochrome:
61% (at 600 nm)
Max
Frame Rate

(Full Sensor)
34.8 fps 92.3 fps 39.7 fps 35 fps 20.8 fps 14.6 fps 50 fps
Read Noise <4.0 e- RMS <7.0 e- RMS <7.0 e- RMS <2.5 e- RMS <1 e- Median RMS; <1.5 e- RMS
Digital Output
10 Bit (Max) 10 Bit (Max) 12 Bit (Max) 16 Bit (Max)
PC Interface USB 3.0
Available
Fanless
Cooling
N/A N/A N/A 0 °C at 20 °C Ambient (CC505MU Only) N/A 0 °C at 20 °C Ambient
(CC215MU Only)
Housing Size
(Click for
Details)
0.59" x 1.72" x 1.86"
(15.0 x 43.7 x 47.2 mm3)
Passively Cooled CMOS Camera
TE-Cooled CMOS Camera
Passively Cooled sCMOS Camera
TE-Cooled sCMOS Camera
Typical
Applications
General Purpose Imaging,
Brightfield Microscopy,
Machine Vision & Robotics,
UAV, Drone, & Handheld Imaging,
Inspection,
Monitoring
VIS/NIR Imaging,
Electrophysiology/Brain Slice Imaging,
Materials Inspection,
Multispectral Imaging,
Ophthalmology/Retinal Imaging,
Vascular Imaging,
Laser Speckle Imaging,
Semiconductor Inspection,
Fluorescence Microscopy,
Brightfield Microscopy
Fluorescence Microscopy,
Immunohistochemistry,
Machine Vision,
Inspection,
General Purpose Imaging
Mono. & Color:
Fluorescence Microscopy,
Immunohistochemistry,
Machine Vision & Inspection

Polarization:
Machine Vision & Inspection,
Transparent Material Detection,
Surface Reflection Reduction
Fluorescence Microscopy,
Immunohistochemistry,
Large FOV Slide Imaging,
Machine Vision,
Inspection
Fluorescence Microscopy,
VIS/NIR Imaging,
Quantum Dots,
Autofluorescence,
Materials Inspection,
Multispectral Imaging
  • These item numbers are representative of the Zelux family. These cameras are available with or without external hardware triggers.
  • Rolling Shutter with Equal Exposure Pulse (EEP) Mode for Synchronizing the Camera and Light Sources for Even Illumination
Scientific CCD Cameras
Camera Type Fast Frame Rate
VGA CCD
1.4 MP CCD 4 MP CCD 8 MP CCD
Item # Prefix Monochrome:
340M
UV-Enhanced
Monochrome:
340UV
Monochrome: 1501M
Color: 1501C
Monochrome: 4070M
Color: 4070C
Monochrome: 8051M
Color: 8051C
Monochrome,
No Sensor Face Plate: S805MU
Product Photo
(Click to Enlarge)
Electronic Shutter Global Shutter
Sensor Type CCD
Number of Pixels
(H x V)
640 x 480 1392 x 1040 2048 x 2048 3296 x 2472
Pixel Size 7.4 µm x 7.4 µm 6.45 µm x 6.45 µm 7.4 µm x 7.4 µm 5.5 µm x 5.5 µm
Optical Format 1/3" (5.92 mm Diagonal) 2/3" (11 mm Diagonal) 4/3" (21.4 mm Diagonal) 4/3" (22 mm Diagonal)
Peak QE
(Click for Plot)
55%
at 500 nm
10%
at 485 nm
Monochrome: 60% at 500 nm
Color: Click for Plot
Monochrome: 52% at 500 nm
Color: Click for Plot
Monochrome: 51% at 460 nm
Color: Click for Plot
51% at 460 nm
Max Frame Rate
(Full Sensor)
200.7 fps (at 40 MHz
Dual-Tap Readout)
23 fps (at 40 MHz
Single-Tap Readout)
25.8 fps (at 40 MHz
Quad-Tap Readout)a
17.1 fps (at 40 MHz
Quad-Tap Readout)b
17.1 fps (at 40 MHz
Quad-Tap Readout)
Read Noise <15 e- at 20 MHz <7 e- at 20 MHz (Standard Models)
<6 e- at 20 MHz (-TE Models)
<12 e- at 20 MHz <10 e- at 20 MHz
Digital Output (Max) 14 Bitc 14 Bit 14 Bitc 14 Bit
Available
Fanless Cooling
Passive Thermal Management -20 °C at 20 °C Ambient Temperature -10 °C at 20 °C Ambient Passive Thermal Management
Available PC
Interfaces
USB 3.0 or Gigabit Ethernet USB 3.0
Housing
Dimensions

(Click for Details)
Non-Cooled Scientific
CCD Camera
Cooled Scientific CCD Camera
Non-Cooled Scientific CCD Camera
No Face Plate Scientific
CCD Camera
Typical Applications Ca++ Ion Imaging,
Particle Tracking,
Flow Cytometry,
SEM/EBSD,
UV Inspection
Fluorescence Microscopy,
VIS/NIR Imaging,
Quantum Dots,
Multispectral Imaging,
Immunohistochemistry (IHC),
Retinal Imaging
Fluorescence Microscopy,
Transmitted Light Microscopy,
Whole-Slide Microscopy,
Electron Microscopy (TEM/SEM),
Inspection,
Material Sciences
Fluorescence Microscopy,
Whole-Slide Microscopy,
Large FOV Slide Imaging,
Histopathology,
Inspection,
Multispectral Imaging,
Immunohistochemistry (IHC)
Beam Profiling & Characterization,
Interferometry,
VCSEL Inspection,
Quantitative Phase-Contrast Microscopy,
Ptychography,
Digital Holographic Microscopy
  • Limited to 13 fps at 40 MHz dual-tap readout for Gigabit Ethernet cameras; quad-tap readout is unavailable for Gigabit Ethernet cameras.
  • Limited to 8.5 fps at 40 MHz dual-tap readout for Gigabit Ethernet cameras; quad-tap readout is unavailable for Gigabit Ethernet cameras.
  • Gigabit Ethernet cameras operating in dual-tap readout mode are limited to 12-bit digital output.