Molded Glass Aspheric Lenses: 350 - 700 nm or 400 - 600 nm AR Coating


  • High NA (0.15 to 0.7)
  • Diffraction-Limited Design
  • Broadband AR-Coated Optics in Stock
  • Collimate or Focus Light with a Single Element

A375TM-A

A375-A

C140TMD-A

354140-A 

C710TMD-A

354710-A

Application Idea

Aspheric Lens in a Fiber Launch Application

Related Items


Please Wait
Webpage Features
 info icon Click for complete specifications.
Performance Hyperlink Click to view item-specific focal length shift data and spot diagrams at various wavelengths.
Zemax Files
Click on the red Document icon next to the item numbers below to access the Zemax file download. Our entire Zemax Catalog is also available.

Click to Enlarge

Click Here to Download the Raw Data

Features

  • Molded Glass Aspheric Lenses
  • Focus or Collimate Light Without Introducing Spherical Aberration
  • Available Unmounted or Pre-Mounted in Nonmagnetic 303 Stainless Steel Lens Cells
    Engraved with the Item #
  • Broadband AR Coating for Either 350 - 700 nm or 400 - 600 nm

Aspheric lenses focus or collimate light without introducing spherical aberration into the transmitted wavefront. For monochromatic sources, spherical aberration often prevents a single spherical lens from achieving diffraction-limited performance when focusing or collimating light. Aspheric lenses are designed to mitigate the impacts of spherical aberration and are often the best single element solution for many applications including collimating the output of a fiber or laser diode, coupling light into a fiber, spatial filtering, or imaging light onto a detector.

All of the molded glass lenses featured on this page are available with an antireflection coating for either the 350 - 700 nm or 400 - 600 nm range deposited on both sides. Other AR coating options are listed in the Aspheric Lens Selection Guide table at right.

These lenses can be purchased unmounted or premounted in nonmagnetic 303 stainless steel lens cells that are engraved with the Item # for easy identification. All mounted aspheres have a metric thread that make them easy to integrate into an optical setup or OEM application; they can also be readily used with our SM1-threaded (1.035"-40) lens tubes by using our aspheric lens adapters. When combined with our microscope objective adapter extension tube, mounted aspheres can be used as a drop-in replacement for multi-element microscope objectives.

A selection of the lenses sold on this page are designed for collimating laser diodes. As seen in the tables below, a compatible laser window thickness is listed for these lenses. In these instances, the numerical aperture (NA), working distance (WD), and wavefront error of these lenses are defined based on the presence of a laser window of the indicated thickness (not included).

If an unmounted aspheric lens is being used to collimate the light from a point source or laser diode, the side with the greater radius of curvature (i.e., the flatter surface) should face the point source or laser diode. To collimate light using one of our mounted aspheric lenses, orient the housing so that the externally threaded end of the mount faces the source.

Molded glass aspheres are manufactured from a variety of optical glasses to yield the indicated performance. The molding process will cause the properties of the glass (e.g., Abbe number) to deviate slightly from those given by glass manufacturers. Specific material properties for each lens can be found by clicking on the Info Icon  in the tables below and selecting the Glass tab. 

Choosing a Lens

Aspheric lenses are commonly chosen to couple incident light with a diameter of 1 - 5 mm into a single mode fiber. A simple example will illustrate the key specifications to consider when trying to choose the correct lens.

Example:
Fiber: P1-630A-FC-2
Collimated Beam Diameter Prior to Lens: Ø3 mm

The specifications for the P1-630A-FC-2, 630 nm, FC/PC single mode patch cable indicate that the mode field diameter (MFD) is 4.3 μm. This specification should be matched to the diffraction-limited spot size given by the following equation:

Equation for Diffraction-Limited Spot

Here, f is the focal length of the lens, λ is the wavelength of the input light, and D is the diameter of collimated beam incident on the lens. Solving for the desired focal length of the collimating lens yields

focal length of collimating lens

Thorlabs offers a large selection of mounted and unmounted aspheric lenses to choose from. The aspheric lens with a focal length that is closest to 16 mm has a focal length of 15.29 mm (Item # 354260-B or A260-B). This lens also has a clear aperture that is larger than the collimated beam diameter. Therefore, this option is the best choice given the initial parameters (i.e., a P1-630A-FC-2 single mode fiber and a collimated beam diameter of 3 mm). Remember, for optimal coupling, the spot size of the focused beam must be less than the MFD of the single mode fiber. As a result, if an aspheric lens is not available that provides an exact match, then choose one with a focal length that is shorter than the calculation above yields. Alternatively, if the clear aperture of the aspheric lens is large enough, the beam can be expanded before the aspheric lens, which has the result of reducing the spot size of the focus beam.

Aspheric Lens Design Variables
Click to Enlarge

Reference Drawing
Definitions of Variables
z Sag (Surface Profile)
Y Radial Distance from Optical Axis
R Radius of Curvature
k Conic Constant
A4 4th Order Aspheric Coefficient
A6 6th Order Aspheric Coefficient
An nth Order Aspheric Coefficient

The target values of these constants are available by clicking on the Info Icons () below or by viewing the .pdf  and .dxf files available for each lens. Links to the files can be found by clicking on the part number in the price tables below.

Aspheric Lens Design Formula

  • Positive Radius Indicates that the Center of Curvature is to the Right of the Lens
  • Negative Radius Indicates that the Center of Curvature is to the Left of the Lens
Aspheric Lens Equation
Aspheric Lens Equation

Choosing a Collimation Lens for Your Laser Diode

Since the output of a laser diode is highly divergent, collimating optics are necessary. Aspheric lenses do not introduce spherical aberration and are therefore are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application.

Example

  • Laser Diode to be Used: L780P010
  • Desired Collimated Beam Diameter: Ø3 mm (Major Axis)

When choosing a collimation lens, it is essential to know the divergence angle of the source being used and the desired output diameter. The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 10° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case, use 30°). If you wish to convert your elliptical beam into a round one, we suggest using an Anamorphic Prism Pair, which magnifies one axis of your beam.

laser diode collimation drawing

Ø = Beam Diameter

Θ = Divergence Angle

Assuming that the width of the lens is negligible compared to the radius of curvature, the thin lens approximation can be used to determine the appropriate focal length for the asphere. Assuming a divergence angle of 30° (FWHM) and desired beam diameter of 3 mm:

focal length calculation

f = Focal Length

Note that the focal length is generally not equal to the needed distance between the light source and the lens.

With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses. For this application, the ideal lens is a molded glass aspheric lens with focal length near 5.6 mm and our -B antireflection coating, which covers 780 nm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:

0.30 = NALens > NADiode ≈ sin(15°) = 0.26

Up to this point, we have been using the full-width at half maximum (FWHM) beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).

A good rule of thumb is to pick a lens with an NA twice that of the laser diode NA. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). These lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm. In general, using a collimating lens with a short focal length will result in a small collimated beam diameter and a large beam divergence, while a lens with a large focal length will result in a large collimated beam diameter and a small divergence.


Posted Comments:
Y BoH  (posted 2020-12-11 21:40:55.72)
When you are facing many boxes full of random mounted molded aspheric in the lab, trying to find one for a fiber coupler, it would be super useful if the laser marking on the side of the lens is not just meaning less model number but also the focal length of the lens.
YLohia  (posted 2020-12-24 11:16:13.0)
Hello, thank you for your feedback. We are always looking to improve are existing products and will consider adding more useful engravings in the future.
user  (posted 2020-09-08 20:35:54.0)
There is a typo on note 8 of the "Auto CAD PDF" for C340TMD-A. The working distance reference points are not given. "from" is typed twice
YLohia  (posted 2020-09-09 10:46:54.0)
Hello, thank you for your feedback. We will correct this typo.
Ibrahim Kucukkara  (posted 2020-08-25 04:03:45.893)
I have a 9mm TO can type L450G1 450nm laser diode with beam diameter of 6mm. Will you please suggest me a collimating lens and a proper adaptor and lens tube for a good collimation? Thank you very much for your valuable help in advance. Regards İbrahim
YLohia  (posted 2020-08-25 04:12:05.0)
Hello Ibrahim, thank you for contacting Thorlabs. Please see the Collimation Tutorial tab on this page for information on picking appropriate collimation lenses. I have reached out to you directly to discuss your application and requirements further.
Gerald Auböck  (posted 2020-03-10 13:07:07.22)
Dear Ladies and Gentleman, do you have a damage threshold for your N414-A (CW operation), thanks and Best Regards, Gerald
nbayconich  (posted 2020-03-20 02:10:21.0)
Thank you for contacting Thorlabs. At the moment we have not tested these optics for pulsed or CW damage threshold limitations. I will reach out to you directly to discuss your application.
user  (posted 2019-04-01 14:34:42.947)
The aspheric coefficients in Zemax file have the same sign: -0.00015041 -2.451e-006 -0.00000002547 The aspheric coefficients shown in this page have different signs: -0.00015041 -2.451e-006 -0.00000002547
YLohia  (posted 2019-04-04 09:02:11.0)
Hello, thank you for contacting Thorlabs. The aspheric coefficients change sign based on the direction the lens is pointing. The coefficients are correct in Zemax as well as the info icon. All of these coefficients should have the same sign. That being said, we did find an issue with the signs on the product page of this lens (https://www.thorlabs.com/thorproduct.cfm?partnumber=A397-A) and are working to correct it.
yusefzadib  (posted 2017-04-14 15:36:40.633)
Hi I used bellow products to setup a laser source: 1.C110TMD-A, f = 6.24 mm, NA = 0.40, 2.L638P700M, 638 nm, 700 mW, Ø5.6 mm,G Pin code 3.LDH56-P2/M, 30 mm Cage Plate Collimation Mount 4.SR9HF, ESD Protection and Strain Relief Cable, Pin Codes F and G, 7.5 V However, I couldn't get a suitable collimated beam. It was It should be mentioned that all focal distances were checked with precise devices.
tfrisch  (posted 2017-04-28 09:46:34.0)
Hello, thank you for contacting Thorlabs. I notice that your source is a multimode laser diode which is expected to have greater divergence at collimation than a similar single mode source. I will reach out to you directly about your application.
richard  (posted 2017-02-16 13:08:52.723)
Hello, I was wondering if you could provide the concentricity tolerance between the mounted optic and the 9.24 mm OD of your M9 threaded mounted aspheres (such as A397TM-A).
tfrisch  (posted 2017-03-01 05:00:18.0)
Hello, thank you for contacting Thorlabs. Most units will be seated better than the absolute tolerances of the lens and bore diameters, but 0.19mm is the worst case scenario.
chiwon.lee  (posted 2017-01-09 10:06:57.053)
Hello, is it possible to manufature aspheric lenes with deep UV (250 nm) anti-reflective coating?
tfrisch  (posted 2017-01-09 11:59:30.0)
Hello, thank you for contacting Thorlabs. So far into the UV, absorption will be come a concern. I will reach out to you directly with information on materials that may be suitable for a UV range asphere.
mbennahmias  (posted 2016-06-27 10:54:25.437)
Hello, I would like to know what is the laser induced damage threshold for this optical element / AR coating. I am using a 0.2 W 375 nm laser diode and the diverging beam size at this location is ~ 0.1 to 0.2 mm
andrew.logan  (posted 2014-12-16 13:52:10.44)
In the drawings for the 354560-A you give the tolerance on the lens diameter at +/- 0.15 mm, whereas Lightpath's 2014 pdf catalogue shows their typical tolerance as +/- 0.015 mm. Is this a typo, or does the 354560 have a tolerance that is an order of magnitude worse than what is typical of Lightpath? Thanks
myanakas  (posted 2015-01-14 02:19:40.0)
Response from Mike at Thorlabs: Thank you for your feedback. This is a typo, the correct tolerance is +/- 0.015. We are currently working to have the website updated to correct this.
moritz.kick  (posted 2014-01-07 15:25:08.0)
Hi, we want to couple a laser beam into and out of a fiber. The wavelength is 580 nm, we use the 460-HP fiber (MFD 3.5µm) and the Collimated Beam Diameter prior to Lens is about 1.3 mm. I calculated f as 6.16 so the best aspheric lens for coupling the light into the fiber would be the item 352170-A. Is this correct so far? But what kind of lense do I need to collimate the beam past the fiber. Can I use the same lense for both sides? Thanks for your support
jlow  (posted 2014-01-08 05:10:48.0)
Response from Jeremy at Thorlabs: At 580nm, the estimated MFD of the 460HP fiber is around 3.9µm nominally. Therefore, the ideal focal length lens would have around 6.8mm focal length. Using that number, the closest focal length asphere that would give you the best theoretical coupling efficiency would be the A375-A (7.5mm focal length). However, the difference with using the 6.24mm focal length asphere is relatively small (<0.5% absolute). For the collimation on the other end, it depends on the beam diameter and beam divergence you are looking to have on the output. Longer focal length would give you larger beam diameter and smaller beam divergence. You can use the same focal length lens on the output as well.
tcohen  (posted 2012-09-04 10:05:00.0)
Response from Tim at Thorlabs: Thank you for contacting us. For the most efficiency in our support, a member of our China support team will contact you directly.
houshannanhai  (posted 2012-09-04 03:28:27.0)
??,????????????0.22,???1.5mm??????532nm?????,???????????40mm????????????????????????????????????(working distance)????????,?????????????????,???????qq??????
bdada  (posted 2011-11-14 23:47:00.0)
Response from Buki at Thorlabs.com Thank you for participating in our Feedback Forum. We can provide custom coatings on our lenses. We have contacted you to get more information from you in order to provide a quote.
c2hollow  (posted 2011-11-14 15:14:57.0)
Is it possible to get the C330TME-A with 405nm V-coating?
AR Coating Abbreviations
Abbreviation Description
U Uncoated: Optics Do Not have an AR Coating
A Broadband AR Coating for the 350 - 700 nm or 400 - 600 nm Range
B Broadband AR Coating for the 600 - 1050 nm or 650 - 1050 nm Range
C Broadband AR Coating for the 1050 - 1620 nm or 1050 - 1700 nm Range
V Narrowband AR Coating Designed for the Wavelength Listed in the Table Below

The table below contains all molded visible and near-IR aspheric lenses offered by Thorlabs. For our selection of IR molded aspheres, click here. The Item # listed is that of the unmounted, uncoated lens. An "X" in any of the five AR Coating Columns indicates the lens is available with that coating (note that the V coating availability is indicated with the design wavelength). The table to the right defines each letter and lists the specified AR coating range. Clicking on the X takes you to the landing page where that lens (mounted or unmounted) can be purchased.

Base Item # AR Coating Options Effective
Focal Length
NA Outer Diameter of
Unmounted Lens
Working Distance Entrance
Clear Aperture of
Unmounted Lens
U A B C V Unmounted Mounteda
354710 X X X X   1.5 mm 0.5 2.650 mm 0.5 mmb 0.4 mmb S1: 1.15 mm
S2: 1.50 mmc
354140 X X X X   1.5 mm 0.6 2.400 mm 0.8 mm 0.8 mm S1: 1.14 mm
S2: 1.60 mmc
355151 X X X X   2.0 mm 0.5 3.000 mm 0.5 mmb 0.3 mmb S1: 1.09 mm
S2: 2.00 mmc
355440 X X X X   2.8 mm 0.3/0.5c 4.700 mm 2.0 mmb 1.8 mmb S1: 3.76 mm
S2: 4.12 mmc
355392 X X X X   2.8 mm 0.6 4.000 mm 1.5 mm 1.0 mm S1: 2.50 mm
S2: 3.60 mmc
355390 X X X X   2.8 mm 0.6 4.500 mm 2.2 mm 1.9 mm S1: 3.60 mm
S2: 3.60 mmc
355660 X X X X   3.0 mm 0.5 4.000 mm 1.6 mm 1.3 mm S1: 2.35 mm
S2: 3.60 mmc
354330 X X X X   3.1 mm 0.7 6.325 mm 1.8 mm 1.77 mm S1: 5.00 mm
S2: 3.84 mmc
N414   X X X   3.30 mm 0.47 4.50 mm 1.94 mm 1.83 mm 3.52 mm
354340 X X X     4.0 mm 0.6 6.325 mm 1.5 mmb 1.2 mmb S1: 3.77 mm
S2: 5.10 mmc
352610   X X     4.00 mm 0.60 6.325 mm 1.52 mm 1.22 mm 4.80 mm
352671   X X   405 4.02 mm 0.60 6.325 mm 1.37 mm 1.06 mm 4.80 mm
354350 X   X X   4.5 mm 0.4 4.700 mm 2.2 mm 1.6 mm S1: 2.05 mm
S2: 3.70 mmc
355230 X X X X   4.5 mm 0.6 6.330 mm 2.8 mmb 2.4 mmb S1: 3.93 mm
S2: 5.07 mmc
A230 X X X X   4.51 mm 0.55 6.34 mm 2.91 mm 2.53 mm 4.95 mm
352230         1064 4.51 mm 0.551 6.325 mm 2.67 mm 2.43 mm 4.95 mm
354453 X X X X 4.6 mm 0.5 6.000 mm 2.0 mmb 0.9 mmb S1: 3.38 mm
S2: 4.80 mmc
A390   X X     4.60 mm 0.53 6.00 mm 2.70 mm 1.64 mm 4.89 mm
354430 X   X X   5.0 mm 0.2 2.000 mm 4.4 mm 4.0 mm S1: 1.40 mm
S2: 1.60 mmc
354105 X X X X 5.5 mm 0.6 7.200 mm 3.1 mmb 2.0 mmb S1: 4.96 mm
S2: 6.00 mmc
354171 X X X X   6.2 mm 0.3 4.700 mm 3.4 mmb 2.8 mmb S1: 2.72 mm
S2: 3.70 mmc
355110 X X X X   6.2 mm 0.4 7.200 mm 2.7 mmb 1.6 mmb S1: 2.93 mm
S2: 5.00 mmc
352110       1064 6.24 mm 0.40 7.20 mm 2.67 mm 1.70 mm 5.00 mm
A110 X X X X   6.24 mm 0.40 7.20 mm 3.39 mm 2.39 mm 5.00 mm
A375   X X X   7.50 mm 0.30 6.51 mm 5.90 mm 5.59 mm 4.50 mm
354240 X X X X 8.00 mm 0.5 9.950 mm 5.90 mmb 4.80 mmb S1: 8.00 mm
S2: 6.94 mmc
A240 X X X X   8.00 mm 0.50 9.94 mm 5.92 mm 4.79 mm 8.00 mm
352240   1064 8.0 mm 0.5 9.950 mm 4.9 mm 3.8 mm S1: 8.00 mm
S2: 6.94 mmc
354060 X X X X 9.6 mm 0.3 6.325 mm 7.5 mmb 7.1 mmb S1: 5.13 mm
S2: 5.20 mmc
354061 X X X X 11.0 mm 0.2 6.325 mm 8.9 mmb 8.5 mmb S1: 4.63 mm
S2: 5.20 mmc
352220         1064 11.00 mm 0.25 7.215 mm 6.97 mm 5.83 mm 5.50 mm
A220 X X X     11.00 mm 0.26 7.20 mm 7.97 mm 6.91 mm 5.50 mm
354220 X X X X 11.0 mm 0.3 7.200 mm 6.9 mmb 5.8 mm S1: 4.07 mm
S2: 5.50 mmc
355397 X X X X 11.0 mm 0.3 7.200 mm 9.3 mmb 8.2 mmb S1: 6.24 mm
S2: 6.68 mmc
A397   X X X   11.00 mm 0.30 7.20 mm 9.64 mm 8.44 mm 6.59 mm
354560 X X X X   13.86 mm 0.2 6.330 mm 12.1 mm 11.7 mm S1: 4.54 mm
S2: 5.10 mmc
A260   X X X   15.29 mm 0.16 6.50 mm 14.09 mm 13.84 mm 5.00 mm
354260 X X X X   15.3 mm 0.2 6.500 mm 12.7 mmb 12.4 mmb S1: 4.61 mm
S2: 5.00 mmc
352280       1064 18.40 mm 0.15 6.500 mm 15.88 mm 15.63 mm 5.50 mm
A280   X X X   18.40 mm 0.15 6.50 mm 17.13 mm 16.88 mm 5.50 mm
354280 X X X X   18.4 mm 0.2 6.500 mm 15.9 mmb 15.6 mmb S1: 5.15 mm
S2: 5.50 mmc
  • The mounted working distance is measured from the edge of the unthreaded portion of the housing.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
  • The clear aperture of the unmounted lens is different on either side. Please visit the landing page for more details.

EFL = 1.xx mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
354140-A info 1.45 mm 0.58 2.4 mm 0.81 mm 1.60 mm 1.0 mm 780 nm 350 - 700 nm - D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C140TMD-A 6.2 mm 0.81 mm M6 x 0.5 SPW306
354710-A info
1.49 mm 0.53 2.7 mm 0.52 mm 1.50 mm 0.9 mm 1550 nm 350 - 700 nm 0.25 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C710TMD-A 6.2 mm 0.42 mm M6 x 0.5 SPW306

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon  for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354140-A Support Documentation
354140-Af = 1.45 mm, NA = 0.6, WD = 0.81 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$61.56
Volume Pricing
Today
C140TMD-A Support Documentation
C140TMD-Af = 1.45 mm, NA = 0.58, WD = 0.81 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$95.31
Volume Pricing
Today
354710-A Support Documentation
354710-Af = 1.5 mm, NA = 0.5, WD = 0.52 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$76.87
Volume Pricing
Today
C710TMD-A Support Documentation
C710TMD-Af = 1.49 mm, NA = 0.53, WD = 0.42 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$101.86
Volume Pricing
Today

EFL = 2.xx mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Range M LWTc Glass Performance Thread Suggested
Spanner
Wrench
355151-A info 2.00 mm 0.50 3.0 mm 0.48 mmd 2.00 mm 1.9 mm 780 nm 350 - 700 nme 0.25 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C151TMD-A 6.2 mm 0.28 mmd M6 x 0.5 SPW306
355390-A info 2.75 mm 0.55 4.50 mm 2.16 mm 3.60 mm 1.90 mm 830 nm 400 - 600 nm - D-ZLaF52LA 390_Asph.pdf - -
C390TME-A 8.21 mm 1.91 mm M8 x 0.5 SPW308
355392-A info 2.75 mm 0.64 4.0 mm 1.50 mm 3.60 mm 2.2 mm 830 nm 350 - 700 nme - D-ZLaF52LA 392_Asph.pdf - -
C392TME-A 6.2 mm 0.98 mm M6 x 0.5 SPW306
355440-A info 2.76 mm 0.26f
0.52g
4.7 mm 1.96 mmf
7.09 mmg
4.12 mm 3.8 mm 980 nm 350 - 700 nme 2 0.25 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C440TMD-A 8.2 mm 1.86 mmf
7.09 mmg
3.76 mmf
4.12 mmg
M8 x 0.5 SPW308
355660-A info 2.97 mm 0.60 4.00 mm 1.56 mm 3.60 mm 2.50 mm 1550 nm 400 - 600 nm - D-ZLaF52LA 660_Asph.pdf - -
C660TME-A 8.2 mm 1.31 mm M8 x 0.5 SPW308

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon  for details).
  • Image side.
  • Object side.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
355151-A Support Documentation
355151-Af = 2.0 mm, NA = 0.5, WD = 0.48 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$69.98
Volume Pricing
Today
C151TMD-A Support Documentation
C151TMD-Af = 2.0 mm, NA = 0.5, WD = 0.28 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$104.06
Volume Pricing
Today
355390-A Support Documentation
355390-Af = 2.8 mm, NA = 0.6, WD = 2.2 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$90.94
Volume Pricing
Today
C390TME-A Support Documentation
C390TME-Af = 2.8 mm, NA = 0.6, WD = 2.0 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$97.19
Volume Pricing
Today
355392-A Support Documentation
355392-ACustomer Inspired! f = 2.8 mm, NA = 0.6, WD = 1.5 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$90.94
Volume Pricing
Today
C392TME-A Support Documentation
C392TME-ACustomer Inspired! f = 2.75 mm, NA = 0.64, WD = 0.98 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$97.19
Volume Pricing
Today
355440-A Support Documentation
355440-Af = 2.8 mm, NA = 0.3/0.5, WD = 1.96/7.1 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$65.93
Volume Pricing
Today
C440TMD-A Support Documentation
C440TMD-Af = 2.76 mm, NA = 0.26/0.52, WD = 1.86/7.09 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$87.81
Volume Pricing
Today

EFL = 3.xx mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
354330-A info 3.1 mm 0.7 6.33 mm 1.8 mm S1: 5.00 mm
S2: 3.84 mm
3.214 mm 830 nm 350 - 700 nm - D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C330TMD-A 9.24 mm 1.8 mm M9 x 0.5 SPW301
N414-A info 3.30 mm 0.47 4.50 mm 1.94 mm 3.52 mm 3.87 mm 670 nm 350 - 700 nm 0.25 mm H-ZLaF52 N414_Asph.pdf - -
N414TM-A 6.22 mm 1.83 mm M6 x 0.5 SPW306

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
355660-A Support Documentation
355660-Af = 3.0 mm, NA = 0.5, WD = 1.6 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$107.81
Volume Pricing
Today
C660TME-A Support Documentation
C660TME-Af = 3.0 mm, NA = 0.5, WD = 1.3 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$114.37
Volume Pricing
Today
354330-A Support Documentation
354330-Af = 3.1 mm, NA = 0.7, WD = 1.8 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$76.87
Volume Pricing
Today
C330TMD-A Support Documentation
C330TMD-Af = 3.1 mm, NA = 0.7, WD = 1.8 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$95.31
Volume Pricing
Today
N414-A Support Documentation
N414-Af = 3.30 mm, NA = 0.47, WD = 1.94 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$99.87
Volume Pricing
Today
N414TM-A Support Documentation
N414TM-Af = 3.30 mm, NA = 0.47, WD = 1.83 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$105.98
Volume Pricing
Today

EFL = 4.xx mm

Item #(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
352610-A info 4.00 mm 0.60 6.325 mm 1.52 mme 4.80 mm 3.057 mm 410 nm 350 - 700 nm 1.20 mm ECO-550 610_Asph.pdf - -
C610TME-A 9.2 mm 1.22 mme M9 x 0.5 SPW301
352671-A info 4.02 mm 0.60 6.325 mm 1.37 mme 4.80 mm 3.036 mm 408 nm 350 - 700 nm 0.25 mm ECO-550 671_Asph.pdf - -
C671TME-A 9.2 mm 1.06 mme M9 x 0.5 SPW301
354340-A info 4.03 mm 0.64 6.3 mm 1.48 mme 5.10 mm 3.1 mm 685 nm 350 - 700 nm 1.20 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C340TMD-A 9.2 mm 1.18 mme M9 x 0.5 SPW301
355230-A info 4.51 mm 0.55 6.3 mm 2.83 mme 5.07 mm 2.7 mm 780 nm 350 - 700 nm 0.25 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C230TMD-A 9.2 mm 2.43 mme M9 x 0.5 SPW301
A230-A info 4.51 mm 0.55 6.33 mm 2.91 mm 4.95 mm 2.94 mm 780 nm 350 - 700 nm 0.25 mm S-NPH1 A230_Asph.pdf - -
A230TM-A 9.24 mm 2.53 mm M9 x 0.5 SPW301
354453-A info 4.6 mm 0.5 6.000 mm 2.049 mme S1:
3.38 mm
S2:
4.80 mm
3.135 mm 655 nm 350 - 700 nm 0.275 mm D-ZK3 Focal Shift /
 Spot Size Cross Section
- -
C453TMD-A 9.2 mm M9 x 0.5 SPW301
A390-A info 4.60 mm 0.53 6.00 mm 2.70 mm 4.89 mm 3.10 mm 655 nm 350 - 700 nm 0.275 mm H-LaK54 A390_Asph.pdf - -
A390TM-A 9.24 mm 1.64 mm M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
357610-A Support Documentation
357610-Af = 4.0 mm, NA = 0.6, WD = 1.5 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$124.71
Lead Time
C610TMD-A Support Documentation
C610TMD-Af = 4.0 mm, NA = 0.6, WD = 1.1 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$142.20
Lead Time
357775-A Support Documentation
357775-Af = 4.0 mm, NA = 0.6, WD = 1.9 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$124.71
Lead Time
C775TMD-A Support Documentation
C775TMD-Af = 4.0 mm, NA = 0.6, WD = 1.5 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$142.20
Lead Time
354340-A Support Documentation
354340-Af = 4.0 mm, NA = 0.6, WD = 1.48 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$76.87
Volume Pricing
Today
C340TMD-A Support Documentation
C340TMD-Af = 4.03 mm, NA = 0.64, WD = 1.18 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$95.31
Volume Pricing
Today
355230-A Support Documentation
355230-Af = 4.5 mm, NA = 0.6, WD = 2.83 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$65.93
Volume Pricing
Today
C230TMD-A Support Documentation
C230TMD-Af = 4.51 mm, NA = 0.55, WD = 2.43 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$84.38
Volume Pricing
Today
A230-A Support Documentation
A230-Af = 4.51 mm, NA = 0.55, WD = 2.91 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$90.55
Volume Pricing
Today
A230TM-A Support Documentation
A230TM-Af = 4.51 mm, NA = 0.55, WD = 2.53 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$96.96
Volume Pricing
Today
354453-A Support Documentation
354453-Af = 4.6 mm, NA = 0.5, WD = 2.05 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$70.46
Volume Pricing
Today
C453TMD-A Support Documentation
C453TMD-Af = 4.6 mm, NA = 0.5, WD = 0.9 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$87.29
Volume Pricing
Today
A390-A Support Documentation
A390-Af = 4.60 mm, NA = 0.53, WD = 2.70 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$99.87
Volume Pricing
Today
A390TM-A Support Documentation
A390TM-Af = 4.60 mm, NA = 0.53, WD = 1.64 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$105.98
Volume Pricing
Today

EFL = 5.5 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
354105-A info
5.5 mm 0.6 7.200 mm 3.091 mme S1:
4.96 mm
S2:
6.00 mm
2.937 mm 633 nm 350 - 700 nm 0.250 mm D-ZK3 Focal Shift /
 Spot Size Cross
Section
- -
C105TMD-A 9.2 mm M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon  for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354105-A Support Documentation
354105-Af = 5.5 mm, NA = 0.6, WD = 3.09 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$137.18
Volume Pricing
Today
C105TMD-A Support Documentation
C105TMD-Af = 5.5 mm, NA = 0.6, WD = 2.0 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$153.54
Volume Pricing
Today

EFL = 6.xx mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
354171-A info 6.20 mm 0.30 4.7 mm 3.44 mme 3.70 mm 3.5 mm 633 nm 350 - 700 nm 0.28 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C171TMD-A 8.2 mm 2.84 mme M8 x 0.5 SPW308
355110-A info 6.24 mm 0.40 7.2 mm 2.69 mme 5.00 mm 5.2 mm 780 nm 350 - 700 nm 0.28 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C110TMD-A 9.2 mm 1.59 mme M9 x 0.5 SPW301
A110-A info 6.24 mm 0.40 7.20 mm 3.39 mm 5.00 mm 5.36 mm 780 nm 350 - 700 nm 0.275 mm H-LaK54 A110_Asph.pdf - -
A110TM-A 9.24 mm 2.39 mm M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354171-A Support Documentation
354171-Af = 6.2 mm, NA = 0.3, WD = 3.44 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$66.57
Volume Pricing
Today
C171TMD-A Support Documentation
C171TMD-Af = 6.20 mm, NA = 0.30, WD = 2.84 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$88.75
Volume Pricing
Today
355110-A Support Documentation
355110-Af = 6.2 mm, NA = 0.4, WD = 2.69 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$87.81
Volume Pricing
Today
C110TMD-A Support Documentation
C110TMD-Af = 6.24 mm, NA = 0.40, WD = 1.59 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$106.24
Volume Pricing
Today
A110-A Support Documentation
A110-Af = 6.24 mm, NA = 0.40, WD = 3.39 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$90.55
Volume Pricing
Today
A110TM-A Support Documentation
A110TM-Af = 6.24 mm, NA = 0.40, WD = 2.39 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$96.96
Volume Pricing
Today

EFL = 7.50 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
A375-A info 7.50 mm 0.30 6.51 mm 5.90 mm 4.50 mm 2.75 mm 810 nm 350 - 700 nm 0.275 mm H-LaK54 A375_Asph.pdf - -
A375TM-A 9.24 mm 5.59 mm M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon  for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
A375-A Support Documentation
A375-Af = 7.50 mm, NA = 0.30, WD = 5.90 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$99.87
Volume Pricing
Today
A375TM-A Support Documentation
A375TM-Af = 7.50 mm, NA = 0.30, WD = 5.59 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$105.98
Volume Pricing
Today

EFL = 8.00 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner Wrench
354240-A info 8.00 mm 0.50 9.94 mm 5.9 mm S1:
8.00 mm
S2: 6.94 mm
3.434 mm 780 nm 350 - 700 nm 0.25 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C240TMD-A 12.24 mm 4.8 mm M12 x 0.5 SPW302
A240-A info 8.00 mm 0.50 9.94 mm 5.92 mm 8.00 mm 3.69 mm 780 nm 350 - 700 nm 0.25 mm D-LaK6 A240_Asph.pdf - -
A240TM-A 12.24 mm 4.79 mm M12 x 0.5 SPW302

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354240-A Support Documentation
354240-Af = 8.0 mm, NA = 0.5, WD = 4.9 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$73.52
Volume Pricing
Today
C240TMD-A Support Documentation
C240TMD-Af = 8.00 mm, NA = 0.5, WD = 4.8 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$95.58
Volume Pricing
Today
A240-A Support Documentation
A240-Af = 8.00 mm, NA = 0.50, WD = 5.92 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$90.55
Volume Pricing
Today
A240TM-A Support Documentation
A240TM-Af = 8.00 mm, NA = 0.50, WD = 4.79 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$96.96
Volume Pricing
Today

EFL = 9.6 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
354060-A info
9.6 mm 0.3 6.325 mm 7.486 mme S1:
5.13 mm
S2:
5.20 mm
2.493 mm 633 nm 350 - 700 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C060TMD-A 9.2 mm M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon  for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354060-A Support Documentation
354060-Af = 9.6 mm, NA = 0.3, WD = 7.49 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$70.46
Volume Pricing
Today
C060TMD-A Support Documentation
C060TMD-Af = 9.6 mm, NA = 0.3, WD = 7.1 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$86.82
Volume Pricing
Today

EFL = 11.00 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
354061-A info 11.0 mm 0.2 6.330 mm 8.909 mme S1:
4.63 mm
S2:
5.20 mm
2.434 mm 633 nm 350 - 700 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C061TMD-A 9.2 mm M9 x 0.5 SPW301
354220-A info 11.00 mm 0.25 7.2 mm 6.91 mme 5.50 mm 5.0 mm 633 nm 350 - 700 nm 0.25 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C220TMD-A 9.2 mm 5.81 mm M9 x 0.5 SPW301
A220-A info 11.00 mm 0.26 7.20 mm 7.97 mm 5.50 mm 5.00 mm 633 nm 350 - 700 nm 0.25 mm D-K59 A220_Asph.pdf - -
A220TM-A 9.24 mm 6.91 mm 0.275 mm M9 x 0.5 SPW301
355397-A info 11.0 mm 0.3 7.200 mm 9.346 mme S1:
6.24 mm
S2:
6.68 mm
1.947 mm 670 nm 350 - 700 nm 0.275 mm D-ZLaF52LA Focal Shift / 
Spot Size Cross Section
- -
C397TMD-A 9.2 mm M9 x 0.5 SPW301
A397-A info 11.00 mm 0.30 7.20 mm 9.64 mm 6.59 mm 2.20 mm 670 nm 350 - 700 nm 0.275 mm H-LaK54 A397_Asph.pdf - -
A397TM-A 9.24 mm 8.44 mm M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354061-A Support Documentation
354061-Af = 11.0 mm, NA = 0.2, WD = 8.91 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$70.46
Volume Pricing
Today
C061TMD-A Support Documentation
C061TMD-Af = 11.0 mm, NA = 0.2, WD = 8.5 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$86.82
Volume Pricing
Today
A220-A Support Documentation
A220-Af = 11.00 mm, NA = 0.26, WD = 7.97 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$90.55
Volume Pricing
Today
A220TM-A Support Documentation
A220TM-Af = 11.00 mm, NA = 0.26, WD = 6.91 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$96.96
Volume Pricing
Today
354220-A Support Documentation
354220-Af = 11.0 mm, NA = 0.3, WD = 6.91 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$69.98
Volume Pricing
Today
C220TMD-A Support Documentation
C220TMD-Af = 11.00 mm, NA = 0.25, WD = 5.81 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$88.75
Volume Pricing
Today
355397-A Support Documentation
355397-Af = 11.0 mm, NA = 0.3, WD = 9.35 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$70.46
Volume Pricing
Today
C397TMD-A Support Documentation
C397TMD-Af = 11.0 mm, NA = 0.3, WD = 9.346 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$86.82
Volume Pricing
Today
A397-A Support Documentation
A397-Af = 11.00 mm, NA = 0.30, WD = 9.64 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$99.87
Volume Pricing
Today
A397TM-A Support Documentation
A397TM-Af = 11.00 mm, NA = 0.30, WD = 8.44 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$105.98
Volume Pricing
Today

EFL = 13.86 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M Glass Performance Thread Suggested
Spanner
Wrench
354560-A info 13.86 mm 0.18 6.3 mm 12.11 mm 5.10 mm 2.8 mm 650 nm 350 - 700 nm D-ZK3 560_Asph.pdf - -
C560TME-A 9.2 mm 11.74 mm M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon for details).
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354560-A Support Documentation
354560-Af = 13.9 mm, NA = 0.2, WD = 12.1 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$97.19
Volume Pricing
Today
C560TME-A Support Documentation
C560TME-Af = 13.86 mm, NA = 0.18, WD = 12.11 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$104.06
Volume Pricing
Today

EFL = 15.29 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
354260-A info 15.29 mm 0.16 6.5 mm 12.73 mme 5.00 mm 2.2 mm 780 nm 350 - 700 nm 0.25 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C260TMD-A 9.2 mm 12.43 mme M9 x 0.5 SPW301
A260-A info 15.29 mm 0.16 6.50 mm 14.09 mm 5.00 mm 2.20 mm 780 nm 350 - 700 nm 0.25 mm H-LaK54 A260_Asph.pdf - -
A260TM-A 9.24 mm 13.84 mm - M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354260-A Support Documentation
354260-Af = 15.3 mm, NA = 0.2, WD = 12.73 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$76.87
Volume Pricing
Today
C260TMD-A Support Documentation
C260TMD-Af = 15.29 mm, NA = 0.16, WD = 12.43 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$98.74
Volume Pricing
Today
A260-A Support Documentation
A260-Af = 15.29 mm, NA = 0.16, WD = 14.09 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$90.55
Volume Pricing
Today
A260TM-A Support Documentation
A260TM-Af = 15.29 mm, NA = 0.16, WD = 13.84 mm, Mounted Asphere, ARC: 350 - 700 nm
$96.96
Volume Pricing
Today

EFL = 18.40 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Rangec M LWTd Glass Performance Thread Suggested
Spanner
Wrench
354280-A info 18.40 mm 0.15 6.5 mm 15.86 mme 5.50 mm 2.2 mm 780 nm 350 - 700 nm 0.25 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C280TMD-A 9.2 mm 15.56 mme M9 x 0.5 SPW301
A280-A info 18.40 mm 0.15 6.50 mm 17.13 mm 5.50 mm 2.17 mm 780 nm 350 - 700 nm 0.25 mm H-LaK54 A280_Asph.pdf - -
A280TM-A 9.24 mm 16.88 mm - M9 x 0.5 SPW301

OD = Outer Diameter
M = Magnification
LWT = Laser Window Thickness

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • The AR coating is designed for 350 - 700 nm, but the substrate material has poor transmittance in the UV (click on the Info Icon for details).
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from the lens to the window of the laser diode being collimated (not the emission point).
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354280-A Support Documentation
354280-Af = 18.4 mm, NA = 0.2, WD = 15.86 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$76.87
Volume Pricing
Today
C280TMD-A Support Documentation
C280TMD-Af = 18.40 mm, NA = 0.15, WD = 15.856 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$98.74
Volume Pricing
Today
A280-A Support Documentation
A280-Af = 18.40 mm, NA = 0.15, WD = 17.13 mm, Unmounted Aspheric Lens, ARC: 350 - 700 nm
$90.55
Volume Pricing
Today
A280TM-A Support Documentation
A280TM-Af = 18.40 mm, NA = 0.15, WD = 16.88 mm, Mounted Aspheric Lens, ARC: 350 - 700 nm
$96.96
Volume Pricing
Today